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PARALLEL GLOBAL OPTIMIZATION WITH THE PARTICLE SWARM ALGORITHM 1

SUMMARY

Present day engineering optimization problems often impose large computational demands, resulting in

long solution times even on a modern high-end processor. To obtain enhanced computational throughput and

global search capability, we detail the coarse-grained parallelization of an increasingly popular global search

method, the Particle Swarm Optimization (PSO) algorithm. Parallel PSO performance was evaluated using two

categories of optimization problems possessing multiple local minima - large-scale analytical test problems with

computationally cheap function evaluations and medium-scale biomechanical system identification problems with

computationally expensive function evaluations. For load-balanced analytical test problems formulated using 128

design variables, speedup was close to ideal and parallel efficiency above 95% for up to 32 nodes on a Beowulf

cluster. In contrast, for load-imbalanced biomechanical system identification problems with 12 design variables,

speedup plateaued and parallel efficiency decreased almost linearly with increasing number of nodes. The primary

factor affecting parallel performance was the synchronization requirement of the parallel algorithm, which dictated

that each iteration must wait for completion of the slowest fitness evaluation. When the analytical problems were

solved using a fixed number of swarm iterations, a single population of 128 particles produced a better convergence

rate than did multiple independent runs performed using sub-populations (8 runs with 16 particles, 4 runs with

32 particles, or 2 runs with 64 particles). These results suggest that 1) parallel PSO exhibits excellent parallel

performance under load-balanced conditions, 2) an asynchronous implementation would be valuable for real-life

problems subject to load imbalance, and 3) larger population sizes should be considered when multiple processors

are available.

Copyright c
�

2004 John Wiley & Sons, Ltd.

INTRODUCTION

Numerical optimization has been widely used in engineering to solve a variety of NP-complete

problems in areas such as structural optimization, neural network training, control system analysis
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2 J.F. SCHUTTE ET AL.

and design, and layout and scheduling problems. In these and other engineering disciplines, two

major obstacles limiting the solution efficiency are frequently encountered. First, even medium-scale

problems can be computationally demanding due to costly fitness evaluations. Second, engineering

optimization problems are often plagued by multiple local optima, requiring the use of global search

methods such as population-based algorithms to deliver reliable results.

Fortunately, recent advances in microprocessor technology and network technology have led to

increased availability of low cost computational power through clusters of low to medium performance

computers. To take advantage of these advances, communication layers such as MPI [1, 2] and PVM

[3] have been used to develop parallel optimization algorithms, the most popular being gradient-based,

genetic (GA), and simulated annealing (SA) algorithms [4, 5, 6]. In biomechanical optimizations

of human movement, for example, parallelization has allowed problems requiring days or weeks of

computation on a single-processor computer to be solved in a matter of hours on a multi-processor

machine [4].

The Particle Swarm Optimization (PSO) algorithm is a recent addition to the list of global search

methods [7]. This derivative-free method is particularly suited to continuous variable problems and has

received increasing attention in the optimization community. It has been successfully applied to large-

scale problems [8, 9, 10] in several engineering disciplines and, being a population based approach, is

readily parallelizable. It has few algorithm parameters, and generic settings for these parameters work

well on most problems [11, 12].

In this study, we present a parallel PSO algorithm for application to computationally demanding

optimization problems. The algorithm’s enhanced throughput due to parallelization and improved

convergence due to increased population size are evaluated using large-scale analytical test problems

and medium-scale biomechanical system identification problems. Both types of problems possess
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PARALLEL GLOBAL OPTIMIZATION WITH THE PARTICLE SWARM ALGORITHM 3

multiple local minima. The analytical test problems utilize 128 design variables to create a tortuous

design space but with computationally cheap fitness evaluations. In contrast, the biomechanical system

identification problems utilize only 12 design variables but each fitness evaluation is much more costly

computationally. These two categories of problems provide a range of load balance conditions for

evaluating the parallel formulation.

SERIAL PARTICLE SWARM ALGORITHM

Particle swarm optimization was introduced in 1995 by Kennedy and Eberhart [13]. Although

several modifications to the original swarm algorithm have been made to improve performance

[14, 15, 16, 17, 18] and adapt it to specific types of problems [9, 19, 20], a parallel version has not

been previously implemented.

The following is a brief introduction to the operation of the PSO algorithm. Consider a swarm of
 particles, with each particle’s position representing a possible solution point in the design problem

space � . For each particle � , Kennedy and Eberhart proposed that its position �� be updated in the

following manner:

 � �������  � �������������� (1)

with a pseudo-velocity � � ����� calculated as follows:

������������ � ������ � �"!#�%$'& � �)(  � �+*,�-��. ! . $/&10� (  � �+*�2 (2)

Here, subscript 3 indicates a (unit) pseudo-time increment, & � � represents the best ever position of

particle � at time 3 (the cognitive contribution to the pseudo-velocity vector � � ����� ), and &40� represents

the global best position in the swarm at time 3 (social contribution). !5� and ! . represent uniform
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4 J.F. SCHUTTE ET AL.

random numbers between 0 and 1. To allow the product � ��!#� or ��. ! . to have a mean of 1, Kennedy

and Eberhart proposed that the cognitive and social scaling parameters � � and � . be selected such that

� � �6� . �87 . The result of using these proposed values is that the particles overshoot the target half the

time, thereby maintaining separation within the group and allowing for a greater area to be searched

than if no overshoot occurred.

A modification by Fourie and Groenwold [9] on the original PSO algorithm [15] allows transition

to a more refined search as the optimization progresses. This operator reduces the maximum allowable

velocity 9;:=<�>� and particle inertia � � in a dynamic manner, as dictated by the dynamic reduction

parameters ? , @ , �BA . For the sake of brevity, further details of this operater are omitted, but a detailed

description can be found in [9, 11].

The serial PSO algorithm as it would typically be implemented on a single CPU computer is

described below, where 
 is the total number of particles in the swarm. The best ever fitness value

of a particle at design coordinates & � � is denoted by CD�EGFIHKJ and the best ever fitness value of the overall

swarm at coordinates &40� by C 0EGFIHKJ . At time step 3 �6L , the particle velocities MN�O are initialized to values

within the limits LQP M O P M :R<�>O . The vector M :R<�>O is calculated as a fraction of the distance between

the upper and lower bounds MN:R<�>O �6S $ �TDU ( 4VWU * [9], with SX�YLZ2 [ . With this background, the PSO

algorithm flow can be described as follows:

1. Initialize

(a) Set constants 3 :R<�> , � � , � . , ? , MN:=<�>O , � � @ , ��A ,
(b) Initialize dynamic maximum velocity 9\:R<�>� and inertia � �
(c) Set counters 3 ��L , ] �YL , � �_^ . Set random number seed

(d) Randomly initialize particle positions  �Oa`cb in d e�f for � �g^%�h2'2/2'� 

(e) Randomly initialize particle velocities LiP M��O P M,:R<�>O for � �j^%�h2'2/2/� 
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PARALLEL GLOBAL OPTIMIZATION WITH THE PARTICLE SWARM ALGORITHM 5

(f) Evaluate fitness values Ck�O using design space coordinates l�O for � �g^%�m2/2/2'� 

(g) Set Ck�EKFnHKJ � CD�O , & � � o�O for � �_^5�m2/2'2/� 

(h) Set C 0EKFnHKJ to best C �EKFnHKJ and p O to corresponding  �O

2. Optimize

(a) Update particle velocity vector M������� using Eq. (2).

(b) Update particle position vector o����1� using Eq. (1).

(b) Update dynamic maximum velocity 9\:R<�>� and inertia � �
(c) Evaluate fitness value Ck�� using design space coordinates o��
(d) If CD�� P CD�EKFnHKJ then CD�EKFnHqJ � CD�� , & � � 4��
(e) If CD�� P C 0EKFnHKJ then C 0EKFnHqJ � CD�� , & 0 � o��
(f) If C 0EGFIHKJ was improved in (e) then reset ] ��L . Else Increment ]
(g) If 3srY3 :R<�> go to 3

(h) If ] � @ then multiply � ����� by $ ^R(t� A * and 9u:R<�>����� by $ ^R( 9 A *
(i) If stopping condition is satisfied then go to 3.

(j) Increment � . If ��r 
 then increment 3 , and set � �g^ .
(k) Go to 2(a).

3. Report results

4. Terminate

The above logic is illustrated as a flow diagram in Figure 1 without detailing the workings of the

dynamic reduction parameters. Problem independent stopping conditions based on convergence tests

are difficult to define for global optimizers. Consequently we typically use a fixed number of fitness

evaluations or swarm iterations as a stopping criteria.
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6 J.F. SCHUTTE ET AL.

PARALLEL PARTICLE SWARM ALGORITHM

The following issues had to be addressed in order to create a parallel PSO algorithm.

Concurrent Operation and Scalability

The algorithm should operate in such a fashion that it can be easily decomposed for parallel operation

on a multi-processor machine. Furthermore, it is highly desireable that it be scalable. Scalability implies

that the nature of the algorithm should not place a limit on the number of computational nodes that can

be utilized, thereby permitting full use of available computational resources.

An example of an algorithm with limited scalability is a parallel implementation of a gradient-based

optimizer. This algorithm is decomposed by distributing the workload of the derivative calculations for

a single point in design space among multiple processors. The upper limit on concurrent operations

using this approach is therefore set by the number of design variables in the problem.

On the other hand, population-based methods such as the GA and PSO are better suited to parallel

computing. Here the population of individuals representing designs can be increased or decreased

according to the availability and speed of processors. Any additional agents in the population will

allow for a higher fidelity search in the design space, lowering susceptibility to entrapment in local

minima. However, this comes at the expense of additional fitness evaluations.

Asynchronous vs. Synchronous Implementation

The original PSO algorithm was implemented with a synchronized scheme for updating the best

”remembered” individual and group fitness values C,�� and C 0� , respectively, and their associated

positions & � � and &10� . This approach entails performing the fitness evaluations for the entire

swarm before updating the best fitness values. Subsequent experimentation revealed that improved
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PARALLEL GLOBAL OPTIMIZATION WITH THE PARTICLE SWARM ALGORITHM 7

convergence rates can be obtained by updating the CN�� and C 0� values and their positions after each

individual fitness evaluation (i.e., in an asynchronous fashion) [11, 12]. It is speculated that because

the updating occurs immediately after each fitness evaluation, the swarm reacts more quickly to an

improvement in the best-found fitness value.

With the parallel implementation, however, this asynchronous improvement on the swarm is lost

since fitness evaluations are performed concurrently. The parallel algorithm requires updating C1�� and

C 0� for the entire swarm after all fitness evaluations have been performed, as in the original particle

swarm formulation. Consequently, the swarm will react more slowly to changes of the best fitness

value “position” in the design space. This behavior produces an unavoidable performance loss in terms

of convergence rate compared to the asynchronous implementation and can be considered part of the

overhead associated with parallelization.

Coherence

Parallelization should have no adverse affect on algorithm operation. Calculations sensitive to program

order should appear to have occurred in exactly the same order as in the original formulation, leading

to the exact same final answer as obtained by a serial implementation. In the serial PSO algorithm the

fitness evaluations form the bulk of the computational effort for the optimization and can be performed

independently. For our parallel implementation, we therefore chose a coarse decomposition scheme

where the algorithm performs only the fitness evaluations concurrently on a parallel machine. Step 2 of

the particle swarm optimization algorithm was modified accordingly to operate in a parallel manner:

2. Optimize

(a) Update particle velocity vector M������� using Eq. (2).
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8 J.F. SCHUTTE ET AL.

(b) Update particle position vector o����1� using Eq. (1).

(c) Concurrently evaluate fitness values C,�� using design space coordinates ������� for � �
^5�m2/2'2/� 


(d) If CD������ P CD�EKFnHKJ then CD�EKFnHKJ � CD������ , & � �1� � 4����1� for � �g^%�m2/2/2'� 

(e) If CD������ P C 0EKFnHKJ then C 0EKFnHKJ � CD������ , &10����� � o������ for � �j^5�m2/2'2/� 

(f) If C 0EGFIHKJ was improved in (e) then reset ] ��L . Else Increment ]
(g) If 3srY3 :R<�> go to 3

(h) If ] � @ then multiply � ����� by $ ^R(t� A * and 9u:R<�>����� by $ ^R( 9 A *
(i) Increment 3 .
(h) Go to 2(a).

The parallel PSO algorithm is represented by the flow diagram in Figure 2.

Network Communication

In a parallel computational environment, the main performance bottleneck is the communication

latency between processors. This issue is especially relevant to large clusters of computers where the

use of high performance network interfaces are limited due to their high cost. To keep communication

between different computational nodes at a minimum, we use fitness evaluation tasks as the level

of granularity for the parallel software. As previously mentioned, each of these evaluations can

be performed independently and requires no communication aside from receiving design space

coordinates to be evaluated and reporting the fitness value at the end of the analysis.

The optimization infrastructure is organized into a coordinating node and several computational

nodes. PSO algorithm functions and task orchestration are performed by the coordinating node, which

assigns the design coordinates to be evaluated, in parallel, to the computational nodes. With this
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PARALLEL GLOBAL OPTIMIZATION WITH THE PARTICLE SWARM ALGORITHM 9

approach, no communication is required between computational nodes as individual fitness evaluations

are independent of each other. The only necessary communication is between the coordinating node

and the computational nodes and encompasses passing the following information:

1. Several distinct design variable configuration vectors assigned by coordinating node to slave

nodes for fitness evaluation.

2. Fitness values reported from slave nodes to coordinating node.

3. Synchronization signals to maintain program coherence.

4. Termination signals from coordinating node to slave nodes on completion of analysis to stop the

program cleanly.

The parallel PSO scheme and required communication layer were implemented in ANSI C on a Linux

operating system using the Message Passing Interface (MPI) libraries.

Synchronization and Implementation

From the parallel PSO algorithm, it is clear that some means of synchronization is required to ensure

that all of the particle fitness evaluations have been completed and results reported before the velocity

and position calculations can be executed (steps 2a and 2b). Synchronization is done using a barrier

function in the MPI communication library which temporarily stops the coordinating node from

proceeding with the next swarm iteration until all of the computational nodes have responded with

a fitness value. Because of this approach, the time required to perform a single parallel swarm fitness

evaluation will be dictated by the slowest fitness evaluation in the swarm.

Two networked clusters of computers were used to obtain the numerical results. The first cluster

was used to solve the analytical test problems and comprised 40 1.33GHz Athlon PCs located in the

High-performance Computing and Simulation (HCS) Research Laboratory at the University of Florida.
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10 J.F. SCHUTTE ET AL.

The second group was used to solve the biomechanical system identification problems and consisted

of 32 2.40 GHz Intel PCs located in the HCS Research Laboratory at Florida State University. In both

locations, 100 Mbps switched networks were utilized for connecting nodes.

SAMPLE OPTIMIZATION PROBLEMS

Analytical test problems

Two well-known analytical test problems were used to evaluate parallel PSO algorithm performance on

large-scale problems with multiple local minima (see Appendix for mathematical description of both

problems). The first was a test function (Figure 3a) introduced by Griewank [21] which superimposes

a high frequency sine wave on a multi-dimensional parabola. In contrast, the second problem used

the Corana test function [22] which exhibits discrete jumps throughout the design space (Figure 3b).

For both problems, the number of local minima increases exponentially with the number of design

variables. To investigate large-scale optimization issues, we formulated both problems using 128 design

variables. Since fitness evaluations are extremely fast for these test problems, a delay of approximately

half a second was built into each fitness evaluation so that total computation time would not be

swamped by communication time.

Since parallelization opens up the possibility of utilizing large numbers of processors, we used the

analytical test problems to investigate how convergence rate and final solution are affected by the

number of particles employed in a parallel PSO run. To ensure that all swarms were given equally

”fair” starting positions, we generated a pool of 128 initial positions using the Latin Hypercube Sampler

(LHS). Particle positions selected with this scheme will be distributed uniformly throughout the design

space [23].
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PARALLEL GLOBAL OPTIMIZATION WITH THE PARTICLE SWARM ALGORITHM 11

This initial pool of 128 particles was divided into the following sub-swarms: one swarm of 128

particles, two swarms of 64 particles, four swarms of 32 particles, and eight swarms of 16 particles.

Each sub-swarm was used independently to solve the two analytical test problems. This approach

allowed us to investigate whether is it more efficient to perform multiple parallel optimizations with

smaller population sizes or one parallel optimization with a larger population size given a sufficient

number of processors. To obtain comparisons for convergence speed, we allowed all PSO runs to

complete 10,000 iterations before the search was terminated. This number of iterations corresponded

to between 160,000 and 1,280,000 fitness evaluations depending on the number of particles employed

in the swarm.

Biomechanical system identification problems

In addition to the analytical test problems, medium-scale biomechanical system identification problems

were used to evaluate parallel PSO performance under more realistic conditions. These problems were

variations of a general problem that attempts to find joint parameters (i.e., positions and orientations of

joint axes) that match a kinematic ankle model to experimental surface marker data [24]. The data are

collected with an optoelectronic system that uses multiple cameras to record the positions of external

markers placed on the body segments. To permit measurement of three-dimensional motion, we attach

three non-colinear markers to the foot and lower leg. The recordings are processed to obtain marker

trajectories in a laboratory-fixed coordinate system [25], [26]. The general problem possesses 12 design

variables and requires approximately 1 minute for each fitness evaluation. Thus, while the problem is

only medium-scale in terms of number of design variables, it is still computationally costly due to the

time required for each fitness evaluation.

The first step in the system identification procedure is to formulate a parametric ankle joint model
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12 J.F. SCHUTTE ET AL.

that can emulate a patient’s movement by posessing sufficient degrees of freedom. For the purpose of

this paper, we approximate the talocrural and subtalar joints as simple 1 degree of freedom revolute

joints. The resulting ankle joint model (Figure 4) contains 12 adjustable parameters that define its

kinematic structure [24]. The model also has a set of virtual markers fixed to the limb segments in

positions corresponding to the locations of real markers on the subject. The linkage parameters are

then adjusted via optimization until markers on the model follow the experimental marker trajectories

as closely as possible.

To quantify how closely the kinematic model with specified parameter values can follow

experimental marker trajectories, we define a cumulative marker error v as follows:

v � fwxzy � :w � y �1{ �}| x . (3)

where

{ .�}| x � {i~ .�}| x � {i� .�}| x � {�� .�}| x 2 (4)

where {i~ ��| x , {i� �}| x and {i� �}| x are the spatial displacement errors for marker � at time frame � in

the ~ , � , and � directions as measured in the laboratory-fixed coordinate system, � ��[+L is the

number of time frames, and � ��� (3 on the lower leg and 3 on the foot) is the number of markers.

These errors are calculated between the experimental marker locations on the human subject and the

virtual marker locations on the kinematic model. For each time frame, a nonlinear least squares sub-

optimization is performed to determine the joint angles that minimize { .��| x given the current set of

model parameters. The first sub-optimization is started from an initial guess of zero for all joint angles.

The sub-optimization for each subsequent time frame is seeded with the solution from the previous

time frame to speed convergence. By performing a separate sub-optimization for each time frame and

then calculating the sum of the squares of the marker coordinate errors, we obtain an estimate of

how well the model fits the data for all time frames included in the analysis. By varying the model
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PARALLEL GLOBAL OPTIMIZATION WITH THE PARTICLE SWARM ALGORITHM 13

parameters and repeating the sub-optimization process, the parallel PSO algorithm finds the best set of

model parameters that minimize v over all time frames.

For numerical testing, three variations of this general problem were analyzed as described below.

In all problems the number of particles used by the parallel PSO algorithm was set to a recommended

value of 20 [12].

1. Synthetic data without numerical noise

Synthetic (i.e., computer generated) data without numerical noise were generated by simulating

marker movements using a lower body kinematic model with virtual markers. The synthetic

motion was based on an experimentally measured ankle motion (see 3 below). The kinematic

model used anatomically realistic joint positions and orientations. Since the joint parameters

associated with the synthetic data were known, this optimization was used to verify that the

parallel PSO algorithm could accurately recover the original model.

2. Synthetic data with numerical noise

Numerical noise was superimposed on each synthetic marker coordinate trajectory to emulate the

effect of marker displacements caused by skin movement artifacts [27]. A previously published

noise model requiring three random parameters was used to generate a perturbation � in each

marker coordinate [28]:

� ����� �G� $�� ] ���D* (5)

where � is the amplitude, � the frequency, and � the phase angle of the noise. These noise

parameters were treated as uniform random variables within the bounds L�P���P�^s� � ,

L�P � P�75[ !�� @;� � v � , and L�PY�cP�7�� [28].

3. Experimental data

Experimental marker trajectory data were obtained by processing three-dimensional recordings
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14 J.F. SCHUTTE ET AL.

from a subject performing movements with reflective markers attached to the foot and lower leg

as previously described. Institutional review board approval was obtained for the experiments

and data analysis, and the subject gave informed consent prior to participation. Marker positions

were reported in a laboratory-fixed coordinate system.

Speedup and parallel efficiency

Parallel performance for both classes of problems was quantified by calculating speedup and parallel

efficiency for different numbers of processors. Speedup is the ratio of sequential execution time to

parallel execution time and ideally should equal the number of processors. Parallel efficiency is the

ratio of speedup to number of processors and ideally should equal 100%. For the analytical test

problems, only the Corana problem was run since the half second delay added to both problems makes

their parallel performance identical. For the biomechanical system identification problems, only the

synthetic data with numerical noise case was evaluated since experimentation with the other two cases

produced similar parallel performance.

The number of particles and nodes used for each parallel evaluation was selected based on the

requirements of the problem. The Corana problem with 128 design variables was solved using 32

particles and 1, 2, 4, 8, 16, and 32 nodes. The biomechanical problem with 12 design variables was

solved using 20 particles and 1, 2, 5, 10, and 20 nodes. Both problems were allowed to run until 1,000

fitness evaluations were completed.

NUMERICAL RESULTS

Convergence rates for the two analytical test problems differed significantly with changes in swarm

size. For the Griewank problem (Figure 5a), individual PSO runs converged to within 1e-4 of the
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PARALLEL GLOBAL OPTIMIZATION WITH THE PARTICLE SWARM ALGORITHM 15

global minimum after 10,000 optimizer iterations, regardless of the swarm size. Run-to-run variations

in final fitness value (not shown) for a fixed swarm size were small compared to variations between

swarm sizes. For example, no runs with 16 particles produced a better final fitness value than any of

the runs with 32 particles, and similarly for the 16-32, 32-64, and 64-128 combinations. When number

of fitness evaluations was considered instead of number of swarm iterations, runs with a smaller

swarm size tended to converge more quickly than did runs with a larger swarm size (see triangles

in Figure 5). However, two of the eight runs with the smallest number of particles failed to show

continued improvement near the maximum number of iterations, indicating possible entrapment in a

local minimum. Similar results were found for the Corana problem (Figure 5b) with two exceptions.

First, the optimizer was unable obtain the global minimum for any swarm size within the specified

number of iterations (Figure 5b), and second, overlapping in results between different swarm sizes was

observed. For example, some 16 particle results were better than 32 particles results, and similarly for

the other neighboring combinations. On average, however, a larger swarm size tended to produce better

results for both problems.

The parallel PSO algorithm found ankle joint parameters consistent with the known solution or

results in the literature [24]. The algorithm had no difficulty recovering the original parameters from

the synthetic date set without noise (Table I), producing a final cumulative error v on the order of

^�L\� �I� . The original model was recovered with mean orientation errors less than 0.05 degrees and

mean position errors less than 0.008 cm. Furthermore, the parallel implementation produced identical

fitness and parameter histories as did a synchronous serial implementation. For the synthetic data set

with superimposed noise, a RMS marker distance error of 0.568 cm was found, which is on the order

of the imposed numerical noise with maximum amplitude of 1 cm. For the experimental data set, the

RMS marker distance error was 0.394 cm, comparable to the error for the synthetic data with noise.
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Convergence characteristics were similar for the three data sets considered in this study. The initial

convergence rate was quite high (Figure 6a), whereafter it slowed when the approximate location of

the global minimum was found. As the solution process proceeded, the optimizer traded off increases

in RMS joint orientation error (Figure 6b) for decreases in RMS joint position error (Figure 6c) to

achieve further minor reductions in the fitness value.

The analytical and biomechanical problems exhibited different parallel performance characteristics.

The analytical problem demonstrated almost perfectly linear speedup (Figure 7a, squares) resulting in

parallel efficiencies above 95% for up to 32 nodes (Figure 7b, squares). In contrast, the biomechanical

problem exhibited speedup results that plateaued as the number of nodes was increased (Figure 7a,

circles), producing parallel efficiencies that decreased almost linearly with increasing number of nodes

(Figure 7b, circles). Each additional node produced roughly a 3% reduction in parallel efficiency.

DISCUSSION

This study presented a parallel implementation of the Particle Swarm global optimizer. The

implementation was evaluated using analytical test problems and biomechanical system identification

problems. Speedup and parallel efficiency results were excellent when each fitness evaluation took the

same amount of time. For problems with large numbers of design variables and multiple local minima,

maximizing the number of particles produced better results than repeated runs with fewer particles.

Overall, parallel PSO makes efficient use of computational resources and provides a new option for

computationally demanding engineering optimization problems.

The agreement between optimized and known orientation parameters 
 � ( 
�� for the biomechanical

problem using synthetic data with noise was poorer than initially expected. This finding was the

direct result of the sensitivity of orientation calculations to errors in marker positions caused by the
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injected numerical noise. Because of the close proximity of the markers to each other, even relatively

small amplitude numerical noise in marker positions can result in large fluctuations in the best-fit

joint orientations. While more time frames could be used to offset the effects of noise, this approach

would increase the cost of each fitness evaluation due to an increased number of sub-optimizations.

Nonetheless, the fitness value for the optimized parameters was lower than that for the parameters used

to generate the original noiseless synthetic data.

Though the biomechanical optimization problems only involved 12 design variables, multiple local

minima existed when numerical or experimental noise was present. When the noisy synthetic data

set was analyzed with a gradient-based optimizer using 20 random starting points, the optimizer

consistently found distinct solutions, indicating a large number of local minima. Similar observations

were made for a smaller number of gradient-based runs performed on the experimental data set.

To evaluate the parallel PSOs ability to avoid entrapment in these local minima, we performed 10

additional runs with the algorithm. All 10 runs converged to the same solution, which was better than

any of the solutions found by gradient-based runs.

Differences in parallel PSO performance between the analytical test problem and the biomechanical

system identification problem can be explained by load balancing issues. The half second delay added

to the analytical test problem made all fitness evaluations take approximately the same amount of time

and substantially less time than communication tasks. Consequently, load imbalances were avoided

and little degradation in parallel performance was observed with increasing number of processors. In

contrast, for the biomechanical system identification problem, the time required to complete the 50 sub-

optimizations was sensitive to the selected point in design space, thereby producing load imbalances.

As the number of processors increased, so did the likelihood that at least one fitness evaluation would

take much longer than the others. Due to the synchronization requirement of the current parallel
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implementation, the resulting load imbalance caused by even one slow fitness evaluation was sufficient

to degrade parallel performance rapidly with increasing number of nodes. An asynchronous parallel

implementation could be developed to address this problem with the added benefit of permitting high

parallel efficiency on inhomogeneous clusters.

Our results for the analytical and biomechanical optimization problems suggest that PSO performs

best on problems with continuous rather than discrete noise. The algorithm consistently found the

global minimum for the Griewank problem, even when the number of particles was low. Though the

global minimum is unknown for the biomechanical problem using synthetic data with noise, multiple

PSO runs consistently converged to the same solution. Both of these problems utilized continuous,

sinusoidal noise functions. In contrast, PSO did not converge to the global minima for the Corana

problem with its discrete noise function. Thus, for large-scale problems with multiple local minima

and discrete noise, other optimization algorithms such as Genetic Algorithms may provide better results

(ref Soest and Casius).

Use of a LHS rather than uniform random sampling to generate initial points in design space may

be a worthwhile PSO algorithm modification. Experimentation with our random number generator

indicated that initial particle positions can at times be grouped together. This motivated our use of LHS

to avoid re-sampling the same region of design space when providing initial guesses to sub-swarms.

To investigate the influence of sampling method on PSO convergence rate, we performed multiple

runs with the Griewank problem using uniform random sampling and a LHS with the default design

variable bounds (-600 to +600) and with the bounds shifted by 200 (-400 to +800). We found that

when the bounds were shifted, convergence rate with uniform random sampling changed while it did

not with a LHS. Thus, swarm behavior appears to be influenced by sampling method, and a LHS may

be helpful for minimizing this sensitivity.
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A secondary motivation for running the analytical test problems with different numbers of particles

was to determine whether the use of sub-swarms would improve convergence. The question is whether

a larger swarm where all particles communicate with each other is more efficient than multiple

smaller swarms where particles communicate within each sub-swarm but not between sub-swarms.

It is possible that the global best position found by a large swarm may unduly influence the motion of

all particles in the swarm. Creating sub-swarms that do not communicate eliminates this possibility.

In our approach, we performed the same number of fitness evaluations for each population size. Our

results for both analytical test problems suggest that when a large numbers of processors is available,

increasing the swarm size will increase the probability of finding a better solution.

Analysis of PSO convergence rate for different numbers of particles also suggests an interesting

avenue for future investigation. Passing an imaginary curve through the triangles in Figure 5 reveals that

for a fixed number of fitness evaluations, convergence rate increases asymptotically with decreasing

number of particles. While the solution found by a smaller number of particles may be a local

minimum, the final particle positions may still identify the general region in design space where the

global minimum is located. Consequently, an adaptive PSO algorithm that periodically adjusts the

number of particles upward during the course of an optimization may improve convergence speed. For

example, an initial run with 16 particles could be performed for a fixed number of fitness evaluations.

At the end of that phase, the final positions of those 16 particles would be kept, but 16 new particles

would be added to bring the total up to 32 particles. The algorithm would continue using 32 particles

until the same number of fitness evaluations was completed. The process of gradually increasing the

number of particles would continue until the maximum specified swarm size (e.g., 128 particles) was

analyzed. To ensure systematic sampling of the design space, a LHS would be used to generate a pool

of sample points equal to the maximum number of particles and from which sub-samples would be
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drawn progressively at each phase of the optimization. In the scenario above with a maximum of 128

particles, the first phase with 16 particles would remove 16 sampled points from the LHS pool, the

second phase another 16 points, the third phase 32 points, and the final phase the remaining 64 points.

CONCLUSIONS

In summary, the parallel Particle Swarm Optimization algorithm presented in this study exhibits

excellent parallel performance as long as individual fitness evaluations require the same amount of

time. For optimization problems where the time required for each fitness evaluation varies substantially,

an asynchronous implementation may be needed to reduce wasted CPU cycles and maintain high

parallel efficiency. When large numbers of processors are available, use of larger population sizes may

result in improved convergence rates to the global solution. An adaptive PSO algorithm that increases

population size incrementally may also improve algorithm convergence characteristics.

ACKNOWLEDGMENTS

The authors gratefully acknowledge funding for this study from NIH National Library of Medicine

(R03 LM07332) and Whitaker Foundation grants to B.J. Fregly and an AFOSR (F49620-09-1-0070)

grant to R.T. Haftka.

APPENDIX

Analytical test problems

Modified Griewank
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Figure 1. Serial implementation of the PSO algorithm. To avoid complicating the diagram, we have omitted

velocity/inertia reduction operations.
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Figure 2. Parallel implementation of the PSO algorithm. We have again omitted velocity/inertia reduction

operations to avoid complicating the diagram.Copyright c
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Figure 3. Surface plots of the a) Griewank and b) Corana analytical test problems showing the presence of multiple

local minima. For both plots, 126 design variables were fixed at their optimal values and the remaining 2 design

variables varied in a small region about the global minimum.
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Figure 4. Joint locations and orientations in the parametric ankle kinematic model. Each ý ¦ (i = 1,...,12) represents

a different position or orientation parameter in the model.
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Figure 5. Average fitness convergence histories for the a) Griewank and b) Corana analytical test problems for

swarm sizes of 16, 32, 64, and 128 particles and 10,000 swarm iterations. Triangles indicate the location on each

curve where 160,000 fitness evaluations were completed.
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Figure 6. Fitness convergence and parameter error plots for the biomechanical system identification problem using

synthetic data with noise.
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Figure 7. a) Speedup and b) parallel efficiency for the analytical and biomechanical optimization problems.

Copyright c
	

2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:0–0

Prepared using nmeauth.cls



PARALLEL GLOBAL OPTIMIZATION WITH THE PARTICLE SWARM ALGORITHM 31

Model Upper Lower Synthetic Synthetic data Synthetic data

parameter bound bound solution without noise with noise


 � (degrees) 48.67 -11.63 18.37 18.36 15.13
 . (degrees) 30.00 -30.00 0.00 -0.01 8.01
 � (degrees) 70.23 10.23 40.23 40.26 32.97
 � (degrees) 53.00 -7.00 23.00 23.03 23.12
�þ (degrees) 72.00 12.00 42.00 42.00 42.04
�ÿ (cm) 6.27 -6.27 0.00 0.00 -0.39
�� (cm) -33.70 -46.24 -39.97 -39.97 -39.61
�� (cm) 6.27 -6.27 0.00 -0.00 0.76
�� (cm) 0.00 -6.27 -1.00 -1.00 -2.82
 � O (cm) 15.27 2.72 9.00 9.00 10.21
 �Ú� (cm) 10.42 -2.12 4.15 4.15 3.03
 � . (cm) 6.89 -5.65 0.62 0.62 -0.19

Table I. Parallel PSO results for the biomechanical system identification problem using synthetic marker

trajectories without and with numerical noise. Both optimizations were terminated after 40,000 fitness evaluations.
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Synthetic Data Synthetic Data Experimental

RMS Errors Without Noise With Noise Data

Marker distances (cm) 3.58e-4 0.568 0.394

Orientation parameters (deg) 1.85e-2 5.01 N/A

Position parameters (cm) 4.95e-4 1.00 N/A

Table II. Synthetic and experimental marker distance and joint parameter RMS errors for the biomechanical system

identification problem.
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